
Brute Forcing Intel x86 Instruction
Correctness Via Unit Testing and an Intern

Pool

m4b.github.io@gmail.com

May 24, 2015

To begin, let f(x) be a function from the number of bytes to the number
of possible binary sequences for that number of bytes:

f(x) = 2(8∗x) (1)

Since the largest Intel instruction can be 15 bytes, and the shortest 1
byte, we have exactly:

ω = 5.21265880699967e + 33 =
15∑
i=1

f(i) (2)

possible instructions to test (2 to the power of 15 * 8, for example, is the
number of different combinations of 0s and 1s for a 15-byte sequence, and
hence the number of possible 15-byte instructions).

Let’s suppose half of them #UD. A more liberal estimate might be more
appropriate, but half seems sufficient for our demonstration here.

Now, let’s suppose we have access to a large pool of interns, p, whom we
task with committing a binary sequence, bi, of size i, where 1 ≤ i ≤ 15, and
an expected value, ej, to a text file. To make things simple, let’s suppose ej
is a constant number of bytes on disk, say 32.

Hence, the total number of bytes for this text file we require is therefore
only:

1

15∑
i=1

f(i) ∗ i ∗ (32 + 2)

2
(3)

where we add two (2) bytes for two (2) new lines in order to make the
resulting text file more human readable.

Further, let us suppose we have already generated the binary sequences,
and the new lines, which leaves only (ω∗32)

2
bytes to be committed to disk,

by our pool of interns, p.
Let us further suppose that they only commit correct expected values (or

their employment will be promptly terminated, and they will not receive a
letter of recommendation).

Furthermore, as can be expected from our harsh treatment, they are
exceptionally efficient at their task, and after each timestep, commit two (2)
times as many expected values to disk.

Their rate of work1 , in bytes committed to disk, is therefore given by:

i(t) = p ∗ 32 ∗
t∑

k=1

2(k−1) (4)

where p is the number of interns and t is a continuous multiplier for some
unit of time > 0.

As such, we wish to know what t equals when i(t) = (ω∗32)
2

Simple algebra2 gives us t as a function of i :

t(i) =
ln(i

(32 ∗p) + 1)

ln2
(5)

For the sake of argument, let us suppose our summer internship program
had a successful recruiting session, and we yielded four (4) interns, hence

1David 2015
2Clarence 2015

2

Figure 1: Effect of number of interns p on t

p = 4 and therefore:

t(ω ∗ 16) =
ln(ω ∗16

32∗4 + 1)

ln2

=
ln(8.34025409119947203e+34

128
+ 1)

0.693147180559945286

=
75.5569565803551768

0.693147180559945286
= 109.005646563141141

(6)

Therefore, if our unit of time is a single day, which seems reasonable given
the constraints above, then we can estimate that a pack of four (4) interns can
finish writing a complete x86 instruction unit test suite for expected values to
disk in approximately the duration of a 3 and 1/2 month summer internship.

Figure 1 illustrates the effect of p on t, when our pool of interns moni-
tonically increases.

As expected, adding more interns only marginally decreases t, with the
“sweet spot” around one-hundred (100) interns.

However, for larger, more serious business enterprises, the extra six (6)
days of extra business activity could be an actionable justification for the
expenditure required in maintaining a larger intern pool.

3

In conclusion, contrary to previous efforts, we have demonstrated that a
complete unit testing suite for the x86 instruction set is a tractable problem,
given the right assumptions.

4

